Impacts of frequent burning on live tree carbon biomass and demography in post-harvest regrowth forest
نویسندگان
چکیده
The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire frequency. This study examines how tree biomass and demography of a eucalypt forest regenerating after harvest is affected by two experimentally manipulated extremes in fire frequency (i.e., ~3 year fire intervals vs. unburnt) sustained over a 23 year period. The rate of post-harvest biomass recovery of overstorey tree species, which constituted ~90% of total living tree biomass, was lower within frequently burnt plots than unburnt plots, resulting in approximately 20% lower biomass in frequently burnt plots by the end of the study. Significant differences in carbon biomass between the two extremes in frequency were only evident after >15-20 years of sustained treatment. Reduced growth rates and survivorship of smaller trees on the frequently burnt plots compared to unburnt plots appeared to be driving these patterns. The biomass of understorey trees, which constituted ~10% of total living tree biomass, was not affected by frequent burning. These findings suggest that future shifts toward more frequent fire will potentially result in considerable reductions in carbon sequestration across temperate forest ecosystems in Australia.
منابع مشابه
Fire-induced carbon emissions and regrowth uptake in western U.S. forests: Documenting variation across forest types, fire severity, and climate regions
[1] The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon...
متن کاملIntegrating management for old-growth characteristics with enhanced carbon storage of northern hardwood-conifer forests
Forest management practices emphasizing stand structural complexity are of interest across the northern forest region of the United States because of their potential to enhance carbon storage. Our research is nested within a long-term study evaluating how silvicultural treatments promoting late-successional forest characteristics affect aboveground biomass development in northern hardwood fores...
متن کاملBiomass Chronosequences of United States Forests: Implications for Carbon Storage and Forest Management
Forests account for a large fraction of the carbon stored in global soils and vegetation (Dixon et al. 1994). Accordingly, considerable effort has been devoted to understanding the impact of land use and forest management on carbon sequestration, and thus on climate change (Harmon et al. 1990; Lugo and Brown 1992; Heath and Birdsey 1993; Dixon et al. 1994; Houghton et al. 1999; Caspersen et al....
متن کاملForest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products
Temperate forests are an important carbon sink, yet there is debate regarding the net effect of forest management practices on carbon storage. Few studies have investigated the effects of different silvicultural systems on forest carbon stocks, and the relative strength of in situ forest carbon versus wood products pools remains in question. Our research describes (1) the impact of harvesting f...
متن کاملEstimation of biomass, carbon stocks and soil sequestration of Gowatr mangrove forests, Gulf of Oman
The mangrove forest ecosystem is known to possess a variety of ecosystem services, including high rates of carbon sequestration, storage and mitigating climate change through reduced deforestation. This study was carried out in the mangrove forests of Gowatr Bay, Gulf of Oman during 2017-18 to quantify biomass and carbon stocks of all components of this forest, including live and dead trees, so...
متن کامل